Домашняя · December 11, 2017
Технологии
Строительные работы
Монтаж металлоконструкций
Бетонные работы
Монтаж деревянных изделий
Монтаж бетонных конструкций
Транспортные работы
Свайные работы
Монтаж комплектных систем
Гость
Имя

Пароль

Запомнить меня



Забыли пароль?


Земляные работы

Виды земляных сооружений

При строительстве зданий и сооружений выполняются различные виды земляных работ: планировка площадки, рыхление твердых или мерзлых грунтов, заглубление фундаментов, обратная засыпка, устройство постоянных, временных и вспомогательных сооружений. На рис.1, а, б, в - поперечные профили выемок; г, д - сечения подземных выработок; е, ж - профили насыпи; з, и - обратная засыпка.

Постоянными называют земляные сооружения, которые после строительства эксплуатируются: каналы, дороги и т.п. Временные сооружения после производства работ ликвидируются: котлованы под фундаменты, траншеи под трубопроводы и т.д. Кюветы, водоотводные канавы и т.п. являются вспомогательными земляными сооружениями.

Временные выемки шириной до 3 м и длиной, значительно превышающей ширину, называются траншеями. Выемку, длина которой не превышает десятикратной ширины, называют котлованом. Котлованы и траншеи имеют дно и боковые стенки или откосы. Временные выемки под транспортные магистрали, шахты, штольни и т.п. земляные сооружения, закрытые с поверхности, называются подземными выработками. После устройства подземных сооружений и частей зданий грунт укладывают в пространство между боковой поверхностью сооружения и откосом котлована. Такую работу называют обратной засыпкой "пазух".


Рис.1. Виды земляных сооружений

/ - поперечные профили выемок; а - траншея прямого профиля; б - котлован (траншея) трапецеидальной формы; в - профиль постоянной выемки; // - сечения подземных выработок; г - круглой; д - прямоугольной; III - профили насыпи; е - временной; ж - постоянной; IV- обратная засыпка; з - пазух котлована; и - траншеи; 1 - бровка откоса; 2 - откос; 3 - берма; 4 - основание откоса; 5 - дно выемки; 6 - банкет; 7 - нагорная канава

По трудоемкости выполнения земляные работы составляют до 20% всей трудоемкости возведения здания, поэтому земляные работы всегда стремились механизировать. В настоящее время до 97 % объемов земляных работ в строительстве комплексно механизированы, однако при мелких рассредоточенных объемах работ, устройстве фундаментов в стесненных условиях, зачистке дна и откосов котлованов, устройстве дренажных канав в гористой местности еще применяется ручной труд. Поэтому основная задача при выполнении земляных работ - полностью исключить ручной труд.

Классификация и основные строительные свойства грунтов

По своему строению грунты можно разделить на сцементированные (или скальные) и несцементированные.

Скальные грунты состоят из каменных горных пород, с трудом поддающихся разработке взрыванием или дроблением клиньями, отбойными молотками и т.п. Скелет несцементированных грунтов обычно состоит из песчаных, пылеватых и глинистых частиц, в зависимости от содержания которых грунты называются: песок, супесь (супесок), суглинок, глина (табл. 1).

В зависимости от содержания глинистых частиц глину называют тощей или жирной, в зависимости от трудоемкости разработки - легкой или тяжелой. Особо трудоемкая для разработки глина называется ломовой.

Таблица 1

Параметры и классификация грунтов

Параметр Песок Супесь Суглинок Глина
Угол естественного откоса при естественной влажности, град. 25...30 30...40 40...50 40...45
Содержание частиц, %
глинистых До 5 До 12 12...33 Более 33
песчаных Более 80 Более 50 - -
Оптимальная влажность уплотнения, % 8...12 9...15 12...20 19...23

Примечание. Прочерк означает, что параметр не нормируется.

К основным свойствам грунтов, влияющим на технологию и трудоемкость их разработки, относятся плотность, влажность, сцепление, разрыхляемость, угол естественного откоса, удельное сопротивление резанию, водоудерживающая способность.

Плотностью называется масса 1 м3 грунта в естественном состоянии (в плотном теле). Плотность несцементированных грунтов 1,2...2,1m/м3 , скальных - до 3,3m/м3.

Влажность характеризуется степенью насыщения грунта водой и определяется отношением массы воды в грунте к массе твердых частиц грунта, выражается в процентах. При влажности более 30 % грунты считаются мокрыми, а при влажности до 5 % - сухими. Чем выше влажность грунта, тем выше трудоемкость его разработки. Исключение составляет глина - сухую глину разрабатывать труднее. Однако при значительной влажности у глинистых грунтов появляется липкость, которая усложняет их разработку.

Сцепление - сопротивление грунта сдвигу. Сила сцепления для песчаных грунтов составляет 3... 50 кПа, для глинистых - 5...200 кПа.

При разработке грунтов вручную их делят на семь групп. Как при механизированной, так и при ручной разработке в состав первой группы входят легко разрабатываемые грунты, а последней - самые трудно разрабатываемые.

Грунт при разработке разрыхляется и увеличивается в объеме. Это явление, называемое первоначальным разрыхлением грунта, характеризуется коэффициентом первоначального рыхления Кp, который представляет собой отношение объема разрыхленного грунта к объему грунта в естественном состоянии. Уложенный в насыпь разрыхленный грунт уплотняется под влиянием массы вышележащих слоев грунта или механического уплотнения, движения транспорта, смачивания дождем и т.д.

Однако грунт длительное время не занимает того объема, который он занимал до разработки, сохраняя остаточное разрыхление, показателем которого является коэффициент остаточного разрыхления грунта Кop.

Степень первоначального и остаточного разрыхления грунтов приведена в табл. 2. Для обеспечения устойчивости земляных сооружений их возводят с откосами, крутизна которых характеризуется отношением высоты к заложению (рис.2)

H / A = l / m

т - коэффициент заложения.

Крутизна откоса зависит от угла естественного откоса б, при котором грунт находится в состоянии предельного равновесия.


Рис.2. Крутизна откоса

Таблица 2

Показатели разрыхления грунтов

Наименования грунтов Первоначальное увеличение объема грунта после разработки, % Остаточное разрыхление грунта, %
Глина ломовая 28...32 6...9
Гравийно-галечные 16...20 5...8
Растительный 20...25 3...4
Лесс мягкий 18...24 3...6
Лесс твердый 24...30 4...7
Песок 10...15 2...5
Скальные 45...50 20...30
Солончак и солонец
мягкий 20...26 3...6
твердый 28...32 5...9
Суглинок
легкий и лессовидный 18...24 3...6
тяжелый 24...30 5...8
Супесь 12...17 3...5
Торф 24...30 8...10
Чернозем и каштановый 22...28 5...7

Нормативные значения крутизны откосов для временных земляных сооружений приведены в табл. 3. При глубине выемки более 5 м крутизна откосов устанавливается проектом. Откосы постоянных сооружений делаются более пологими, чем откосы временных сооружений, и бывают не менее, чем 1:1,5.

Водоудерживающая способность или сопротивляемость грунта прониканию воды очень высока у глинистых грунтов и низка у песчаных. По этой причине последние называются дренирующими, т.е. хорошо пропускающими воду, а первые - недренирующими.

Дренирующая способность грунтов характеризуется коэффициентом фильтрации К, равным 1...150м/сут.

Таблица 3

Крутизна откосов в зависимости от вида грунта и глубины выемки

Наименования грунтов Крутизна откосов (отношение его высоты к заложению) при глубине выемки, м, не более
1,5 3 5
Насыпной неуплотненный 1:0,67 1:1 1:1,25
Песчаный и гравийный 1:0,5 1:1 1:1
Супесь 1:0,25 1:0,67 1:0,85
Суглинок 1:0 1:0,5 1:0,75
Глина 1:0 1:0,25 1:0,5
Лессы и лессовидные 1:0 1:0,5 1:0,5

Подготовка строительной площадки

Для создания благоприятных условий начала строительных работ предварительно выполняют подготовительные работы.

В состав работ по подготовке строительной площадки под новое строительство входят: ограждение участка; расчистка территории и снос существующих строений; перетрассировка мешающих инженерных сетей; защита территории от стока поверхностных вод; прокладка временных коммуникаций и дорог; устройство временных бытовых, складских, культурно-административных и других помещений.

После расчистки территории выполняют работы по созданию опорной геодезической сети, устанавливают обноску и производят геодезическую разбивку зданий и сооружений.

Состав подготовительных работ при реконструкции действующего предприятия в значительной степени зависит от местных условий. Строители стараются максимально использовать имеющиеся инженерные сети, бытовые и административные службы часто размещают во временно освобождающихся помещениях, возводят по плану капитального строительства реконструируемого предприятия здания, которые временно используют для нужд строительства и т.д.

Надземные и подземные инженерные коммуникации, линии связи и электропередачи и другие сооружения, затрудняющие производство работ, демонтируют или переносят на места, определяемые проектом, под наблюдением специалистов соответствующих организаций.

В подготовительный период, иногда достигающий 40 % продолжительности всего строительства, бывает необходимо создать индустриальную базу производства по изготовлению строительных изделий и деталей, растворных и бетонных смесей; связать строительную площадку с основными дорогами, энергетическими и инженерными сетями и т.п.

От тщательности выполнения заданий подготовительного периода в большой степени зависит успех проведения всех основных строительно-монтажных работ по возведению или реконструкции зданий и сооружений, инженерных сетей и пусковых комплексов. Объем работ подготовительного периода определяется в ПОС и уточняется в ППР.

Осушение площадки и рабочих мест. Понижение уровня грунтовых вод или отвод поверхностных вод (верховодки) обычно осуществляют устройством водопонижения или водоотвода. Чаще для этого используют водоотводные канавы или обваловывание с нагорной части площадки (рис.3, а).

При значительном притоке грунтовых вод устраивают открытые или закрытые дренажи. Открытые дренажи представляют собой канавы, на дно которых укладываются слои фильтрующего материала: крупнозернистого песка, щебня или гравия. Закрытые дренажи (рис.3, б, в) - это траншеи, разрабатываемые ниже уровня сезонного промерзания грунта и засыпаемые послойно фильтрующими материалами. По дну дренажа можно укладывать трубу с отверстиями в боковых стенках (перфорированную) для отвода воды.


Рис.3. Водоотвод с помощью

а - обвалования площадки; б - обычного дренажа; в - дренажа с перфорированной трубой; i - уклон; 1 - земляное обволование; 2 - водоотводная канава; 3 - котлован; 4 - строительная площадка; 5 - местный грунт; 6 - дренирующий материал; 7, 8 - соответственно мелко- и крупнозернистый песок; 9 - гравий; 10 - уплотнительный слой; 11 - перфорированная (с отверстиями) труба.

Для защиты от притока воды могут использоваться ледяные стенки из замороженного грунта или противофильтрационные экраны.

Искусственное замораживание (рис.4, а) осуществляют с помощью охлажденного до отрицательной температуры раствора солей с низкой точкой замерзания (хлористый кальций и др.). Для этого в пробуренные скважины опускают замораживающие колонки, состоящие из двух труб: внутренней и наружной с закрытым торцом. Между этими трубами пропускают солевой раствор (хладагент), охлажденный ниже требуемой температуры грунта. Грунт возле стенок наружной трубы замерзает и, постепенно увеличиваясь в диаметре, образует ледяную завесу.

Тиксотропный противофильтрационный экран может быть устроен после забивки шпунта из металлических или деревянных пластин. Затем отдельные шпунтины-инъекторы постепенно извлекают, а на их место нагнетают раствор бентонитовой глины, обладающий водоотталкивающими свойствами (рис.4, б).


Рис.4. Искусственное ограждение выемок от грунтовых вод

а - схема замораживания грунта; б - устройство противофильтрационного экрана с применением шпунтин-инъекторов; в, г - то же, с применением баровых машин и водовоздушной струи; д - устройство грунтобетонного экрана; 1 - замораживающие колонки; 2 - столбы смерзшегося грунта; 3 - котлован; 4 - наружная труба; 5 - внутренняя труба; 6- поверхность замороженного грунта; 7- суспензия; 8 - трубы для подачи суспензии; 9 - шпунтина, извлекаемая из грунта; 10 - то же, погружаемая; 11 - трактор; 12 - рабочий орган с барами; 13 - вытесненный на поверхность грунт; 14 - штанга; 15- направляющая; 16 - инъекторная головка; 17 - мониторная головка.

Суспензия бентонитовой глины может нагнетаться в щели, прорезаемые специальными машинами - барами (рис.4, в) или подаваться через скважины под большим давлением с помощью водовоздушной струи (рис.4, г). Суспензия размывает щель в фунте и заполняет ее.

Грунтобетонный экран (рис.4, д) устраивается так. В грунт погружают буровые штанги с режущими и перемешивающими лопастями, через них нагнетается водоцементная суспензия. При обратном подъеме штанг с вращением лопасти раскрываются, грунт перемешивается с суспензией и в дальнейшем затвердевает, образуя противофильтрационную завесу.

При разработке выемок в грунтах может применяться открытый водоотлив или искусственное понижение уровня грунтовых вод.

Осушение выемки открытым водоотливом применяется при небольшом притоке воды и заключается в том, что подошве выемки придается небольшой уклон (рис.5) к зумпфу, размер которого в плане соответствует 1x1 м. Воду из приямков откачивают насосами: поршневыми при небольшом притоке воды; центробежными для чистой воды; диафрагмовыми для загрязненной воды.


Рис.5. Открытый водоотлив

1 - зумпф-колодец; 2 - рукав; 3- насос; 4 - лоток.

Откаченная из зумпф-колодца вода отводится по трубам или лоткам. При большом притоке воды стенки котлованов во избежание обрушения крепят.

Несмотря на простоту и экономичность открытого водоотлива, производство работ при этом способе может быть осложнено постоянным присутствием воды и возможным нарушением структуры грунта стенок и основания. Поэтому часто приходится использовать искусственное понижение уровня грунтовых вод с помощью иглофильтров (рис.6, а, б), погружаемых в грунт по периметру котлована.

В легких иглофильтровых установках (ЛИУ) вода откачивается через одну трубу обычными методами, в эжекторных иглофильтровых установках (ЭИУ) каждый иглофильтр состоит из двух труб, вода, наоборот, закачивается и, проходя по специальному приспособлению - эжектору, создает разряжение воздуха (рис.6, в, д).

Эжекторными иглофильтрами уровень фунтовых вод (депрессионная кривая) может быть понижен до 17... 18 м, легкими - до 4...5 м. Поэтому легкие иглофильтры иногда ставят в два и три яруса.

В грунтах с низким коэффициентом фильтрации можно использовать явление электроосмоса, для чего необходимо на расстоянии 0,5... 1 м от иглофильтров забить металлические стержни или трубы и подключить их к положительному полюсу источника постоянного тока (аноду); а иглофильтры - к отрицательному (катоду). От анода к катоду начинает идти направленный ток, под воздействием которого в грунте в этом же направлении перемещается вода (направление перемещения воды на рис.6, г обозначено стрелками).


Рис.6. Схемы иглофильтровых установок

а - котлован с легкими иглофильтрами в один ярус; б - то же в два яруса; в, д - эжекторная иглофильтровая установка и фильтровое звено; г - схема электроосушения; 1 - рабочий насос; 2 - водоотводный коллектор; 3 - иглофильтр; 4 - уровень грунтовых вод после осушения; 5 - низконапорный насос; 6 - стальной стержень (анод); 7 - фильтровое звено; 8 - труба наружная; 9- труба внутренняя с эжекторным устройством; 10 - вакуум; 11 - клапан шаровой; УГВ - уровень грунтовых вод.

При необходимости понижения грунтовых вод на 20 ми более могут применяться трубчатые колодцы с артезианскими насосами.

Расчистка территории и снос строений. В соответствии с проектом подготовительных работ часть зеленых насаждений на строительной площадке защищают от повреждений и пересаживают на новые места. Деревья и кустарники, не подлежащие вырубке и пересадке, огораживают, а остальные спиливают механическими или электрическими пилами, толстые корни пней подрезают рыхлителями или бульдозерами, после чего пни корчуют с помощью тракторных лебедок, иногда с помощью полиспастов (рис.7).


Рис.7. Корчевка пней тракторной треловочно-корчевальной лебедкой

а - корчевка прямой тягой; б - корчевка при помощи двойного и тройного полиспаста; 1 - корчуемый пень; 2 - анкерный канат; 3 - тяговый канат; 4 - трактор с лебедкой; 5 - анкерный пень; 6 - вспомогательный анкерный пень; 7 - блок.

Деревья диаметром до 25 см валят бульдозерами, кустарник срезают тракторами-кусторезами. Для раздробления крупных камней и расщепления больших пней иногда используют подрывные методы.

Плодородный слой почвы, подлежащий снятию, перемещают бульдозерами в специально выделенные места (бурты), а затем используют в местах озеленения или отвозят в другие места для рекультивации земли. Комплекс работ по снятию, транспортированию и нанесению плодородного слоя почвы на малопродуктивные угодья с целью их улучшения носит у строителей название "землевание".

Мощность снимаемых плодородных и потенциально плодородных слоев устанавливается на основе оценки плодородия отдельных горизонтов почв. Обычно, если толщина плодородного слоя превышает 10 см, производится его снятие.

При вертикальной планировке участков, используемых в дальнейшем под скверы, парки или для зеленых насаждений, почвенный покров сохраняют, а отвод ливневых вод осуществляют благодаря устройству временных стоков.

Деревянные строения при сносе разбирают на элементы с целью дальнейшего использования пригодной древесины. При разборке каждый отделяемый элемент должен быть предварительно раскреплен и занимать устойчивое положение.

Металлические конструкции при разборке раскрепляют, а затем разрезают кислородными резаками. Железобетонные строения разбирают в соответствии со схемой сноса, обеспечивающей устойчивость строения в целом. В конструкциях предварительно оголяют арматуру, раскрепляют полученные отдельные блоки, режут арматуру и обламывают блоки. Наибольшая масса такого блока в соответствии с требованиями техники безопасности не должна превышать половины грузоподъемности крана при наибольшем вылете крюка.

Последовательность сноса строений принимается обратной последовательности монтажа. Сборные железобетонные конструкции, не поддающиеся поэлементному разделению, разрушают как монолитные. При разработке желательно использовать экскаваторы с различным специальным эффективным навесным оборудованием (рис.8). Например, оборудование "ножницы" на базе экскаватора КАТО НД 1500 GYS обладает усилием резания 2649 кН.


Рис.8. Снос строений с помощью экскаваторов, оборудованных

а - ковшом; б - гидравлическим молотом; в - шар-бабой; г - разламывателем; д - гидроножницами.

Укрепление грунтов

Обычно при возведении земляных сооружений их боковые стенки устраивают таким образом, чтобы угол откоса был меньше угла естественного откоса. Однако очень часто, особенно в городских условиях, из-за стесненности устроить откосы невозможно. Кроме того, при намокании даже в условиях правильно выполненных откосов верхняя часть выемки может обрушиться. Такие случаи происходят из-за того, что при намокании грунта его угол естественного откоса может резко измениться (например, у глины с 45 до 15°, у суглинка с 50 до 20° и т.д.).

В таких условиях необходимо, наряду с ограничением притока воды, укреплять боковые стенки земляных сооружений креплениями (рис.9).


Рис.9. Крепление фунта от обрушения

а - схема обрушения верхней части откоса при намокании; б - инвентарные трубчатые распорные рамы; в, г, д - крепления соответственно шпунтовое, консольное, консольно-распорное; е, ж - крепления распорное и подкосное; 1 - анкерная свая; 2 - оттяжка; 3 - маячная свая (опорная стойка); 4 - направляющая свая; 5 - шпунтовое ограждение; 6 - щиты (доски); 7 - стойки распорной рамы; 8 - распорка.

Шпунтовое ограждение является дорогостоящим способом, применяемым при разработке выемок в водонасыщенных грунтах вблизи существующих зданий и сооружений. Шпунт забивают до разработки выемки, чем обеспечивают устойчивое и естественное состояние грунта за ее пределами.

Крепление консольного типа состоит из стоек - свай, заземленных нижней частью в грунте глубже дна выемки. Они служат опорами для щитов или досок, непосредственно воспринимающих давление грунта. Крепление консольного типа целесообразно при глубине выемки до 5 м. В траншеях значительной глубины используют консольно-распорное крепление, отличающееся от консольного тем, что между стойками в верхней их части перпендикулярно оси траншеи устанавливают распорки.

Распорное (рамное) крепление - наиболее простое в исполнении - применяется при устройстве траншей глубиной до 4 м в сухих или маловлажных грунтах. Оно состоит из стоек, горизонтальных досок или щитов и распорок, прижимающих доски или щиты к стенкам траншеи.

Наиболее эффективны инвентарные трубчатые распорные рамы (рис.9, б) благодаря их малой массе, легкости монтажа и демонтажа. На необходимую ширину их устанавливают поворотом муфт с винтовой нарезкой.

При отрывке траншей деревянные или металлические крепления устанавливают экскаватором непосредственно при отрывке выемки. Экскаватор устанавливает блоки и по мере углубления траншеи придавливает ковшом их верхние торцы.

При создании вокруг разрабатываемых выемок постоянных водонепроницаемых завес или в случае повышения несущей способности грунтовых оснований применяют следующие способы искусственного закрепления грунтов: цементацию и битумизацию; химический, термический, электрический, электрохимический, механический и др.

Цементация и битумизация заключается в инъецировании цементного раствора или разогретых битумов. Эти способы применяют для пористых грунтов с высоким коэффициентом фильтрации, а также трещиноватых скальных пород.

Химическим способом (силикатизацией) закрепляют песчаные и лессовые грунты, нагнетая в них химические растворы.

Термическое закрепление заключается в обжиге лессовых грунтов раскаленными газами, нагнетаемыми через скважины в их поры. Газы подаются в толщу грунта вместе с воздухом через жаропрочные трубы в пробуренных скважинах.

Электрическим способом закрепляют влажные глинистые грунты. Способ заключается в использовании эффекта электроосмоса, для чего через грунт пропускают постоянный электрический ток с напряженностью поля 0,5...1B/см и плотностью 1...5A/м2. При этом глина осушается, уплотняется и теряет способностью к пучению.

Электрохимический способ отличается от предыдущего тем, что одновременно с электрическим током в грунт вводят через трубу, являющуюся катодом, растворы химических добавок (хлористый кальций и др.). Благодаря этому интенсивность процесса закрепления грунта возрастает.

Механический способ укрепления грунтов имеет следующие разновидности: устройство грунтовых подушек и грунтовых свай, вытрамбовывание котлованов и др.

Устройство грунтовых подушек заключается в замене слабого грунта основания другим, более прочным, для чего слабый грунт удаляют, отсыпают прочный грунт с послойным трамбованием. При устройстве грунтовых свай в слабый грунт забивают сваю-лидер, после извлечения лидера в полученную скважину засыпают грунт с послойным уплотнением.

Вытрамбовывание котлованов осуществляют с помощью тяжелых трамбовок, подвешенных на стреле крана. Этот способ менее сложен, чем способ грунтовых подушек, поскольку не требует замены грунта основания.

Уплотнение котлованов значительных размеров может осуществляться гладкими или кулачковыми катками, трамбующими машинами, виброкатками и виброплитами.

Определение объемов земляных работ

Объемы разрабатываемого грунта измеряют кубическими метрами плотного тела. Для некоторых процессов (уплотнение поверхности, планировка и т.д.) объемы могут измеряться квадратными метрами поверхности.

Подсчет объемов разрабатываемого грунта сводится к определению объемов различных геометрических фигур. При этом допускается, что объем грунта ограничен плоскостями, отдельные неровности не влияют значительно на точность расчета.

В промышленном и гражданском строительстве приходится в основном рассчитывать объемы котлованов, траншей, выемок и насыпей при вертикальной планировке площадок.

бъем котлована (рис.10, а)

V = H / 6 [(2a + a1)b + (2a1 + a)b1]

Н - глубина котлована; a, b - длины сторон котлована у основания; а1, b1 - длины сторон котлована поверху (а1 = а + 2Нт; b1 = b + 2Нт); т - коэффициент откоса.


Рис.10. Схемы определения объемов земляных работ

а, в - геометрические схемы определения объема соответственно котлована и траншеи; б- разрез котлована; г - план площадки с откосами (с линией нулевых работ и схематическим представлением геометрических фигур для определения объемов разрабатываемого грунта); С - сооружение; О - обратная засыпка.

Для определения объема обратной засыпки пазух котлована, когда объем его известен, нужно из объема котлована вычесть объем подземной части сооружения (рис.10, б):

Основные способы разработки грунта и применяемые механизмы

Грунты можно разрабатывать механическим, гидромеханическим и взрывным способами. Основным способом является механический.

Механический способ разработки заключается в отделении грунта от массива резанием с помощью землеройных машин (экскаваторов) или землеройно-транспортных машин (бульдозеров, скреперов, грейдеров).

Гидромеханический способ основан на размывании грунта водяной струей гидромонитора или всасывании разжиженного грунта земснарядом.

Взрывным способом в основном разрабатывают грунты, находящиеся за городом. Для этого в земляном массиве бурят скважины, в которые закладываются взрывчатые вещества (ВВ).

Основные процессы механической разработки грунта - рыхление, разработка, транспортирование, отсыпка, разравнивание, уплотнение, планирование откосов и площадей.

Разработка грунта одноковшовыми экскаваторами

Общие положения. Примерно 97 % всех работ при устройстве земляных сооружений комплексно механизированы, т.е. при выполнении процесса полностью исключается ручной труд. На рис.11 приведены схемы комплексной механизации работ при отсыпке тела земляной плотины. Грунт разрабатывается в карьере экскаватором с погрузкой в автосамосвалы (рис.5.11, а), транспортируется на расстояние L, разгружается после подъема кузова, разравнивается бульдозерами и уплотняется катками (рис.11, б, в).


Рис.11. Схемы комплексной механизации земляных работ

а - разработка и транспортирование; б - разгрузка и разравнивание; в - уплотнение.

В промышленном и гражданском строительстве наиболее распространены следующие машины для земляных работ: землеройные (экскаваторы); землеройно-транспортные (бульдозеры, скреперы, грейдеры); рыхлительные (бульдозеры-рыхлители, дизель-молоты); транспортирующие (автосамосвалы); грунтоуплотняющие (катки, вибрационные трамбующие плиты и пр.); специальные машины (буровые установки, копры и т.д.).

Наибольший объем земляных работ в строительстве (45 %) выполняется одноковшовыми экскаваторами: на пневмоколесном ходу (вместимость стандартного ковша 0,15...0,65 м3), на гусеничном ходу (вместимость стандартного ковша 0,25...2,5, реже до 4 м3). Кроме стандартных ковшей при разработке легких грунтов могут устанавливаться ковши повышенной вместимости.

Индекс (марка) отечественного экскаватора, выпущенного до 1968 г., означает вместимость стандартного ковша, например, Э-652А - экскаватор с ковшом вместимостью 0,65 м3, модель 2, первая модернизация. В индексе современного экскаватора содержатся сведения о его основных характеристиках. Например, ЭО-3322AT - экскаватор одноковшовый, универсальный, третьей размерной группы, на пневмоколесном ходу, с жесткой подвеской оборудования, модель 2, прошедшая первую модернизацию в тропическом исполнении.

Экскаватор с прямой лопатой (рис.12, а) в основном используется при разработке выемок в сухих и маловлажных грунтах, что связано с необходимостью съезда на дно выемки. Применяют продольные лобовые (рис.14, б - г) или боковую (рис.12, д) проходки с погрузкой грунта в транспортное средство, которое обычно размещают непосредственно в забое. Для выезда и въезда транспорта устраивают наклонные пандусы с уклоном 10... 15°.


Рис.12. Схемы разработки выемок экскаватором "прямая лопата"

a - общий вид; б, в, г - лобовые проходки соответственно: узкая, нормальной ширины, уширенная; д - боковая проходка; Нормальная ширина лобовой проходки (см. рис.12, в)

При боковой проходке (см. рис.12, д) транспорт подается под погрузку сбоку выработки, что уменьшает угол поворота стрелы экскаватора и способствует повышению его производительности.

Экскаваторы, оборудованные обратной лопатой, разрабатывают выемки торцевыми (лобовыми) и боковыми проходками (рис.13), располагаясь выше дна забоя, что позволяет: использовать их при разработке увлажненных и мокрых грунтов, с погрузкой в транспортное средство или в отвал.


Рис.13. Варианты проходки экскаватора с рабочим оборудованием "обратная лопата"

а - торцевая (лобовая); б - уширенная лобовая; в - поперечно-торцевая; г - боковая; д - торцевая с разгрузкой грунта в транспорт и в отвал; 1 - автосамосвал; 2 - экскаватор.

Транспорт может подаваться по дну выемки или поверху с одной или двух сторон. Глубина забоя определяется длиной рукояти экскаватора. Ширина торцевой проходки при двухсторонней погрузке самосвалов (1,6... 1,7) R0, при односторонней - (1,2... 1,5) R0. При работе в отвал ширина проходки бывает меньше - (0,5... 0,8) R0. При боковой проходке автотранспорт под погрузку может подаваться по верху или по дну котлована, с правой или левой стороны (рис.14).

Экскаваторы с грейферным ковшом применяют при разработке узких или глубоких выемок (траншей, колодцев) в мягких и сыпучих грунтах, в том числе при высоком уровне грунтовых вод. Ковш может быть установлен на рукояти или подвешен на решетчатой стреле, грунт набирается с использованием гидравлического привода или врезания в грунт тяжелого ковша (рис.15, а, б). Гидравлическая система привода позволяет разрабатывать плотные грунты легкими ковшами, что дает возможность за один цикл экскавации набирать в ковш больше грунта. Производительность экскаваторов с таким оборудованием значительно повышается. При отрывке небольших в плане, глубоких выемок экскаватор, оборудованный грейферным ковшом, работает без перемещений. При отрывке траншей он перемещается вдоль траншеи, поэтому подъезд транспорта может осуществляться с любой свободной стороны.


Рис.14. Схемы разработки грунта экскаватором, оборудованным ковшом "обратная лопата"

а, б - с жесткой и гибкой подвеской; в - разработка грунта в материковом залегании с установкой транспорта выше и ниже стоянки экскаватора; г - разработка предварительно разрыхленного грунта; д, е - варианты подъезда автомашин.


Рис.15. Схемы разработки грунта экскаваторами, оборудованными ковшами "грейфер" и "драглайн"

а, б - при установке грейфера на рукояти и решетчатой стреле; в, г - работа ковшом "драглайн"; I - положение ковша при наборе грунта; II - то же при подъеме и разгрузке.

Драглайн (рис.15, в, г) применяют при разработке грунта ниже уровня стоянки экскаватора, без съезда на дно выемки, поэтому наличие грунтовых вод не влияет на работу машины.

Драглайн используют для рытья сравнительно больших котлованов и траншей, а также для отсыпки насыпей, в частности на строительстве каналов, автомобильных и железных дорог.

При применении драглайна выемку грунта можно осуществлять лобовыми или боковыми проходками. Поскольку ковш подвешен на канате, то при загрузке он раскачивается и забрасывается на расстояние, превышающее длину стрелы; часто используют челночные способы работы (рис.16, а, б).

При поперечно-челночном способе самосвал загружается попеременным черпанием ковша с обеих сторон кузова. При продольно-челночном грунт набирается перед задним бортом кузов самосвала. Угол поворота стрелы экскаватора при погрузке по продольно-челночной схеме приближается к 0, а при поперечно-челночной - к 15...20°. Во время разгрузки движение ковша не прекращается, благодаря чему продолжительность цикла экскавации снижается на 20... 26 %.


Рис.16. Разработка грунта способами

а - поперечно-челночным; б - продольно-челночным; в - "на себя"; 1 - подъем ковша; 2 - опускание ковша при наборе грунта; 3 - разгрузка ковша; 4 - автосамосвал.

Экскаваторы с телескопической стрелой (рис.16, в) работают так же, как экскаваторы, оборудованные обратной лопатой. Однако кроме обычных экскавационных работ с помощью этого оборудования можно выполнять зачистные и планировочные работы, что является преимуществом при разработке мелких рассредоточенных земляных сооружений. Для увеличения скорости передвижения с объекта на объект существуют экскаваторы на пневмоходу. Механизм втягивания стрелы у них приспособлен для копания грунта, планировки и зачистки поверхностей, погрузки сыпучих материалов и штучных грузов.

Погрузчики на гусеничном и пневмоколесном ходу (рис.17), как и прямая лопата, работают выше уровня стоянки машины движением ковша от себя. Вместимость ковша погрузчика в 1,5... 2 раза больше вместимости ковша прямой лопаты, что позволяет существенно повысить производительность экскаватора. Движение режущей кромки отвала по прямолинейной горизонтальной траектории позволяет планировать площадку, на которой работает машина. Благодаря возможности перемещения грунта на небольшие расстояния работа одноковшовых погрузчиков бывает особо эффективной в стесненных условиях. Ковш наполняется ступенчатым, экскавационным, раздельным и совмещенным способами (см. рис.19, I-IV соответственно).


Рис.17. Схемы разработки грунта одноковшовыми погрузчиками

а - на пневмоходу; б - на гусеничном ходу, в, г, д - соответственно поворотная, челночная и совмещенная схемы разработки грунта.

Разработка грунта экскаваторами непрерывного действия

У экскаваторов непрерывного действия все операции по разработке грунта выполняются одновременно и непрерывно. По типу рабочего органа экскаваторы подразделяют на цепные многоковшовые и скребковые, роторные многоковшовые и бесковшовые. По характеру движения рабочего органа экскаваторы делятся на экскаваторы продольного, поперечного и радиального копания. У первых направление движения рабочего органа (ротора, ковшовой цепи) совпадает с направлением движения машины. У вторых оно перпендикулярно направлению движения машины. У третьих рабочие органы поворачиваются относительно базы машины (роторные стреловые экскаваторы).

По типу ходового оборудования различают экскаваторы на гусеничном, пневмоколесном и рельсовом ходу.

Цепные экскаваторы продольного копания (непрерывного действия) (рис.18, а, б) применяются для отрывки траншей под кабели, трубопроводы и другие коммуникации с небольшим объемом работ в грунтах первой группы без каменных включений. После срезки ковшами грунт поднимается наверх, откуда скребками, шнеками и отвальным устройством сдвигается в сторону от траншеи.


Рис.18. Экскаваторы непрерывного действия

а, б - экскаватор продольного копания - цепной и роторный; в - плужный канавокопатель; г - экскаватор поперечного копания.

Роторные экскаваторы продольного копания имеют по сравнению с цепными более высокую производительность, но и большую массу. Они используются при больших объемах земляных работ и разработке выемок под крупные линейно-протяженные сооружения.

Плужные канавокопатели (рис.18, в) применяются для отрывки каналов полного профиля при создании оросительных и осушительных сетей.

Экскаваторы поперечного копания (рис.18, г) выпускаются с - цепным рабочим органом и применяются при добыче строительных материалов (песка, глины), мелиоративных и других работах.

Роторные стреловые экскаваторы (рис.19) применяются в промышленном, транспортном и мелиоративном строительстве при разработке крупных котлованов, прокладке каналов, тоннелей, устройстве дамб и плотин, разработке грунта в стесненных условиях. Они имеют небольшие размеры и обладают хорошей маневренностью. Грунт разрабатывается вращающимся ротором при одновременном повороте роторной стрелы в горизонтальной и вертикальной плоскостях. Срезанный грунт через ленточный транспортер перегружается в транспортное средство и отвозится от места разработки.


Рис.19. Схемы разработки грунта роторными стреловыми экскаваторами

а - при открытой разработке; б - при закрытой разработке.

Разработка грунта землеройно-транспортными машинами

К основным землеройно-транспортным машинам относятся скреперы, бульдозеры, грейдеры, которые разрабатывают грунт, перемещают его, разгружают в насыпь и возвращаются в забой порожняком.

Скреперы предназначены для послойного копания грунтов в материковом залегании, их транспортирования и отсыпки в земляные сооружения с планированием слоями равномерной толщины. Скреперы применяют для разработки талых грунтов I и II групп, в том числе грунтов с каменистыми включениями.

При работе на непереувлажненных суглинках, лессах, черноземах и почвах с примесями гравия и гальки скреперы загружаются с "шапкой" и разгружаются полностью; эти же грунты, но высохшие и отвердевшие, а также глины, солончаки и дресву необходимо предварительно разрыхлить плугами или рыхлителями, чтобы обеспечить нормальную загрузку скреперов.

При сухих сыпучих песках скреперы загружаются на 60...70% геометрической вместимости. На липких и переувлажненных грунтах работа скреперов малопроизводительна вследствие прилипания грунта к днищу и стенкам ковшей. На горизонтах ниже уровня грунтовых вод скреперы неработоспособны.

Применяют прицепные (с объемом ковша 3... 10 м3), полуприцепные (4,5... 5 м3) и самоходные (8... 25 м3) скреперы (рис.20).


Рис.20. Скреперы

Укладка и уплотнение грунтов

Укладка в насыпь и уплотнение грунта выполняются при планировочных работах, возведении различных насыпей, обратной засыпке траншей, пазух фундаментов и др. Уплотнение производится с целью увеличения несущей способности грунта, уменьшения его сжимаемости и снижения водопроницаемости. Уплотнение может быть поверхностным и глубинным. В обоих случаях оно осуществляется механизмами.

Существует уплотнение грунтов укаткой, трамбованием и вибрированием. Наиболее предпочтителен комбинированный метод уплотнения, заключающийся в одновременной передаче на грунт различных воздействий (например, вибрирование и укатка), или объединение уплотнения с другим рабочим процессом (например, укатка и движение транспортных средств и др.).

Для обеспечения равномерного уплотнения отсыпанный грунт разравнивают бульдозерами или другими машинами. Наибольшее уплотнение грунта с наименьшей затратой труда достигается при определенной оптимальной для данного грунта влажности (см. табл. 1). Поэтому сухие грунты должны увлажняться, а переувлажненные - осушаться.

Грунт уплотняют участками (захватками), размеры которых должны обеспечивать достаточный фронт работ. Увеличение фронта работ может привести к высыханию подготовленного к уплотнению грунта в жаркую погоду или, наоборот, к переувлажнению в дождливую.

Наиболее трудным является уплотнение грунта при обратной засыпке пазух фундаментов или траншей, так как работы ведутся в стесненных условиях. Во избежание повреждения фундаментов или трубопроводов прилегающий к ним грунт на ширину 0,8 м уплотняется с помощью виброплит, пневматических и электрических трамбовок слоями толщиной 0,15...0,25 м (рис.21, а - в). Более производительные способы, например самопередвигающиеся виброплиты и другие (рис.28, г - ё), применяются при уплотнении засыпки под полы.


Рис.21. Схемы уплотнения грунта

а - общий вид насыпи; б, в - уплотнение виброплитой и вибротрамбовкой; г - то же самопередвигающейся виброплитой; д, е - то же прицепным виброкатком и самоходным кулачковым катком; /, //, III - соответственно виброуплотнение на месте, при движении вперед и назад.

Насыпи, имеющие большую площадь, рекомендуется уплотнять прицепными или самоходными гладкими или кулачковыми катками, а также трамбующими машинами по замкнутому кругу.

Проходки грунтоуплотняющих машин делаются с небольшим перекрытием во избежание пропусков неуплотненного грунта. Число проходок по одному месту и толщина слоя задаются в зависимости от вида грунта и типа грунтоуплотняющей машины или устанавливаются опытным путем (обычно 6...8 проходок).

Насыпи, к которым не предъявляются высокие требования по плотности грунта, можно уплотнять транспортными средствами в процессе отсыпки грунта. Схема работы составляется так, чтобы груженый транспорт перемещался по отсыпанному слою грунта.

Разработка грунта в зимних условиях

В условиях современного круглогодичного строительства примерно 20 % объема земляных работ разрабатывают в зимнее время.

В связи повышенной прочностью мерзлых грунтов зимой в несколько раз увеличивается трудоемкость и стоимость их разработки.

Без предварительной подготовки может разрабатываться грунт, промерзший на глубину до: 0,1м3 - скреперами и бульдозерами; 0,15 м3 - экскаваторами-драглайнами; 0,25 м3 - экскаваторами, оборудованными прямой лопатой, с ковшами вместимостью 0,5...0,65 м; 0,4 м - то же, но более мощными экскаваторами. В остальных случаях грунт до разработки должен быть предварительно подготовлен одним из следующих способов: предохранением от промерзания; оттаиванием; рыхлением.

Предохранение от промерзания заключается в предварительной обработке или утеплении грунта до замерзания теплоизоляционными материалами. Для этого грунт после отвода поверхностных вод можно разрыхлять или вспахивать с боронованием на глубину до 0,35 м3, закрывать местными теплоизоляционными материалами (листва, хвоя, опилки и т.п.), а также устраивать снегозадержание.

Оттаивание грунта может осуществляться сверху вниз, снизу вверх и по горизонтальному направлению - радиально от нагревателя.

Наиболее простым (но дорогостоящим) является огневой способ (рис.22), при котором грунт оттаивает сверху вниз благодаря сжиганию на поверхности замерзшего грунта под колпаком твердого или жидкого топлива. Для оттаивания 1 м мерзлого грунта расходуется примерно 130 кг торфа, 50 кг угля, 0,15 м3 дров, 5 кг дизельного топлива.


Рис.22. Схемы оттаивания грунта

а - огневым способом; б - паровыми иглами; в, г - горизонтальными и вертикальными электродами; 1 - камера сгорания; 2 - вытяжная труба; 3 - слой грунта (опилок); 4 - паропровод; 5 - колпак; 6 - скважина; 7 - паровая игла; 8 - электрод; 9 - трехфазная электросеть.

Также по направлению сверху вниз грунт можно отогревать горизонтальными электродами. Для создания токопроводящих условий поверхность грунта покрывают опилками, смоченными в солевом растворе. Затем отогретый грунт становится проводником тока, а опилки способствуют сохранению тепла.

Прогревание мерзлого грунта электротоком снизу вверх можно осуществить, если имеется возможность погрузить вертикальные электроды ниже уровня промерзания грунта.

Примером отогревания грунта в радиальном направлении может служить оттаивание паровыми иглами или электронагревателями. В первом случае пар, проходя между двумя трубами отдает тепло грунту через наружную трубу; во втором - внутри трубы располагают нагревательный элемент, который нагревает поверхность трубы.

Рыхление грунта может осуществляться взрывным или механическим способом. Взрывание грунта производят только специально подготовленные рабочие-подрывники. Для этого в грунте пробуривают отверстия - шпуры или нарезают щели, в которые закладываются заряды взрывчатого вещества (ВВ).

Механическое рыхление может осуществляться статическим или динамическим воздействием. Пример статического воздействия - рыхление грунта бульдозерно-рыхлительными агрегатами.

В качестве механизмов для динамического воздействия используют дизель-молоты, клин-молоты, машины ударного действия, а также навесное оборудование на экскаваторы (клин и шар-молоты) или гидравлические молоты (рис.23).


Рис.23. Рыхление мерзлого грунта

а - молотом свободного падения; б, в - то же дизель-молотом и гидромолотом; г, д- при глубине промерзания до и более 1,5 м; 1 - молот; 2 - экскаватор; 3 - мерзлый слой грунта; 4 - направляющая штанга; 5 - дизель-молот; 6- гидромолот.

Кроме рыхления иногда мерзлые грунты режут на блоки с последующим их удалением тракторами или разработкой экскаваторами. Такой метод особо эффективен в тех случаях, когда недопустимо сотрясение грунта. Для нарезания блоков рекомендуются баровые машины с цепным рабочим органом, смонтированном на базе трактора.

Комплексная механизация земляных работ

При комплексной механизации земляных работ основные и вспомогательные операции по разработке грунта, его перемещению, укладке в насыпь, уплотнению, а также по окончательной отделке земляного сооружения выполняются с помощью комплекта взаимосвязанных машин и механизмов. Непременным условием комплексной механизации (кроме полной механизации всех процессов) является соответствие производительности всех машин и механизмов комплекта эксплуатационной производительности ведущей машины, как правило, выполняющей основную операцию - разработку грунта. Работы выполняются отдельными потоками, комплектами машин в последовательности, установленной ППР.

Для часто встречающихся работ (рытье котлованов под фундаменты зданий, отрывка траншей и т.п.) разработаны типовые технологические карты или схемы, включающие в себя рекомендуемый набор механизмов, последовательность выполнения работ, взаимосвязь во времени и пространстве.

Контроль качества работ и охраны окружающей среды

При устройстве временных сооружений (котлованов, траншей) проверяют горизонтальную привязку, правильность разбивки осей, вертикальные отметки. Случайные переборы грунта, т.е. снятие его ниже проектных отметок, заполняют грунтом, однородным вынутому, с последующим его уплотнением, а в особо ответственных случаях - тощим бетоном.

На законченные части земляных сооружений, в том числе на скрытые работы, составляют акты, которые вместе с исполнительными чертежами, результатами лабораторных испытаний грунтов, журналами работ и другими документами предъявляют приемной комиссии во время технической сдачи-приемки объекта.

Актируются следующие работы и элементы: устройство оснований под земляные сооружения, фундаменты, трубопроводы и другие коммуникации; выполнение мероприятий по закреплению грунтов и подготовке оснований; конструкции, входящие в тело земляного сооружения; обратные засыпки, грунтовые подушки, насыпные основания под полы; мероприятия, необходимые для возобновления работ при перерывах более 1 мес. при консервации и расконсервации работ.

Приемка насыпей и выемок заключается в проверке в натуре положения земляного сооружения, его геометрических размеров, отметок дна, устройства водоотвода, степени уплотнения грунтов.

В процессе приемки работ по планировке площадок и территорий следует удостовериться в том, что отметки и уклоны соответствуют проектным, нет переувлажненных участков и местных просадок грунта.

Принимая котлованы и траншеи, проверяют соответствие проекту их размеров, отметок, качества грунта в основании, правильность устройства креплений. После освидетельствования выполненных работ разрешается устраивать фундаменты, укладывать трубы и т.п.

Допускаемые отклонения на временные земляные сооружения приведены на рис.24 и 25.


Рис.24. Технологические схемы допустимых отклонений, мм выемок


Рис.25. Технологические схемы допустимых отклонений, мм столбчатых фундаментов

Систематически должно проверяться выполнение разработанных мероприятий по охране природы: снятие и перемещение в отвалы плодородного слоя почвы для последующего использования; защита буртов от эрозии, подтопления, загрязнения; выявление археологических и палеонтологических находок и принятие мер по их сохранению; надежное хранение горюче-смазочных и других материалов, способных негативно воздействовать на природу.

Реклама
Copyright © 2013 kodeks.ru. При использовании материалов портала ссылка на www.constructionlinks.ru обязательна.
Powered by PHP-Fusion v5.01 © 2003-2013